Spring naar inhoud


Door Carol Beuchat PhD

Met toestemming overgenomen en vertaald van de website van het ICB 
Er zijn misschien duizenden honden van jouw ras, maar degenen die gebruikt worden voor de fok en hun genen doorgeven aan de volgende generatie zijn de enige die er echt toe doen in termen van genetica.
In de meeste rassen, wordt slecht 20-30% van de honden die gefokt worden, gebruikt voor verdere fok. De rest wordt verkocht als huishond, meestal met een contract dat er niet met de hond gefokt mag worden of niet geregistreerd mag worden. Deze honden voegen zich bij de gecastreerde en gesteriliseerde honden (noot red. dit betreft de situatie in de VS. In Nederland krijgt een nog veel kleiner percentage van de gefokte pups zelf nakomelingen, ondanks dat hier pups meestal zonder restricties in het contract verkocht worden en alle pups in principe geregistreerd worden bij de Raad van Beheer). Dit betekent dat het aantal honden die zelf weer voor nageslacht zorgt in een ras, veel kleiner is dan  het totaal aantal honden in een ras. Dit heeft significante gevolgen voor de genetica van een ras. ​

Laten we een simulatie doen!
Er bestaan enkele vermakelijke tools die we kunnen gebruiken om de effecten van veranderingen in een populatie op de genetica te onderzoeken. Dit is er één die we gebruiken in mijn populatie genetica cursussen om studenten te helpen begrijpen hoe genetica beïnvloed kan worden door veranderingen in allerlei kenmerken van een populatie, zoals de grootte van de populatie of het toevoegen van nieuwe individuen.
Eén van deze is een online populatie simulator, genaamd Red Lynx. Het is eenvoudig te gebruiken en als je toegang hebt tot internet kun je het gebruiken om een proef te doen.
Ga naar de Red Lynx website op ​http://scit.us/redlynx/.
Klik daar op de knop om de Red Lynx simulator te starten.

Hiermee kom je bij de simulator en je zou het onderstaande scherm moeten zien.
Red Lynx simuleert het "gedrag" van een enkel allel, A1, in populaties met verschillende eigenschappen. Er zijn twee allelen voor elke locus, dus in feite is A1 een setje (laten we die ander A2 noemen). Maar we hoeven alleen maar één allel na te bootsen, aangezien als de frequentie van allel A1 in een populatie omhoog gaat, de frequentie voor A2 omlaag moet gaan. Als we het gedrag van A1 uitbeelden, weten we dat A2 in spiegelbeeld zal reageren. Dus we doen onze simulatie met slechts één allel op een locus.
Op de simulatie pagina, krijg je een grafiek te zien en daaronder een serie parameters die je kunt veranderen met simpele schuifbalken. We gaan alleen met de eerste drie spelen: het aantal generaties, de populatiegrootte en de oorspronkelijke allel frequenties (groene pijlen). Je kunt deze veranderen door ofwel de schuifbalk te gebruiken of het getal dat je wilt in het vak in te typen. De rest van de schuifbalken kun je negeren.

Ok. Laten we eens kijken wat dit doet. Laten we starten met de standaardinstellingen zoals ze er staan als je voor het eerst op de pagina komt, dat zijn 2000 generaties, een populatiegrootte van 800 en een aanvankelijke frequentie van A1 van 50% (dus we weten dat de frequentie van A2 ook 50% is). Klik op "Run Simulation" (rode pijl). Er verschijnt een lijn op de grafiek.
​Deze lijn is het voorspelde gedrag van het allel A1 in deze populatie door de jaren heen, er van uitgaande dat de kans van overerving van het allel van de ene op de andere generatie onder “ideale” condities 50/50 is – dus geen selectie, geen migraties van A1 allelen uit de populatie en geen mutatie. Je ziet dat de oorspronkelijke frequentie 50% is en vandaar uit verandert de frequentie in de populatie met elke generatie.
Nu doen we, zonder de grafiek op te schonen, nog enkele simulaties. Elk van deze lijnen zal anders zijn, vanwege de rol van toeval in vererving bij elke generatie. Als je er genoeg van deze doet, zie je misschien één van de lijnen helemaal naar 0% gaat en daar een vlakke lijn vormt (rode pijl), of naar 100% en daar blijft (groene lijn). In het eerste geval, zijn alle kopieën van het A1 allel uit de populatie verdwenen; voor de groene pijl, is het alternatieve allel (A2)  complete verloren gegaan en is alleen A1 overgebleven, een situatie die we “vastgelegd”  ("fixed") voor dat allel noemen.
nou en?
Ik hoor je zeggen “Dat is cool, maar nou en ?”
Laten we zeggen dat het A1 allel was voor iets zoals de mogelijkheid om een bepaalde geur te ruiken. Het is niet iets waar je op zou selecteren, deze simulatie laat zien dat er een kans is dat het allel alleen door toeval uit de populatie verdwijnt, een fenomeen dat “genetische drift” heet. Misschien was deze geur niet belangrijk voor jou, maar als dit wel zo is voor de hond (b.v. een feromoon), zal dit consequenties hebben die sommige fysiologische of gedrags aspecten zou kunnen beïnvloeden. Misschien is het een allel dat preventief werkt tegen angstgedrag; verlies hiervan in een ras zou absoluut gevolgen hebben voor het welzijn van de hond. Of misschien is het een allel op een locus die het meest voordelig is wanneer deze heterozygoot is – dat is, het genotype A1A2 heeft meer voordeel voor de hond dan A1A1 of A2A2, iets wat “over-dominantie” wordt genoemd. Als één van de allelen onomkeerbaar verdwenen is uit de populatie, zullen alle individuen homozygoot zijn voor dat allel en de voordelige effecten van heterozygotie is niet meer beschikbaar.
Zo laten we ons nu bezig houden met de leuke dingen.
Laten we het aantal generaties in de simulatie op 100 zetten, zodat het meer relevant is voor honden fokken. Verander de populatiegrootte naar 50 en laat de allel frequentie op 50% staan. Gebruik de knop om de grafiek schoon te maken en doe enkele simulaties.
Je zou moeten zien dat de frequentie van A1 in veel van de simulaties naar één van de extremen gaat (0% or 100%)
Doe nu wat simulaties met verschillende populatiegroottes, misschien 100 en 25. Wat voor effect heeft dit op de grafiek?
Deze simulator maakt het gemakkelijk om de effecten van populatiegrootte op het gedrag van allelen in de populatie die je geen enkele aandacht geeft (omdat er niet geselecteerd wordt) te onderzoeken. Duidelijk is dat  de genetische stabiliteit van een populatie gevoelig is voor het aantal individuen.
Waarom is dit van belang voor jouw ras?
Hoe groot is jouw ras? Welk deel van de puppy’s die worden geboren worden gebruikt voor de fok? Onthoud dat alleen reproducerende dieren tellen, wanneer we het over genetica hebben. Wat zijn de effecten van fokcontracten of castreer/steriliseer politiek op de populatiegenetica van jouw ras? Hoe stabiel is het genetisch gezien t.a.v. de kans op het verliezen van allelen door genetische drift?
Deze veranderingen in allel frequenties komen in elke populatie voor. Als een populatie is opgedeeld door gesloten sub-populaties, zal hetzelfde fenomeen zich in elk van hen voordoen. Dit veroorzaakt dat ze genetisch gezien door de jaren heen uit elkaar drijven. Fokkers kunnen hun voordeel halen uit deze verschillen met outcross (red. hier gebruikt als minder verwant fokken binnen hetzelfde ras) welke allelen kan herstellen die misschien sterk gereduceerd zijn in frequentie of compleet verloren zijn. Je kunt dit simuleren met de schuifbalk voor "migration". Als fokkers samen kunnen werken om op deze sub-populaties te letten, kunnen ze het verlies van genetische diversiteit verminderen, de toename van inteelt vertragen en voordeel halen uit de hybrid vigor door de outcross. Analoog hieraan, is de populatie van je ras stabiel, of is het er één van de vele met dalende registraties en minder actieve fokkers dan eerst?
het eenvoudigste wat je kunt doen om de kans te verkleinen op verlies van belangrijke genetische diversiteit in je ras is door het gebruik van meer honden in het fokprogramma. Als het gebruikelijke aandeel 20% is, verhoog het naar 40% of meer. Verkoop niet zoveel pups met contracten die fok verbieden, of fok eenmalig voor castratie of sterilisatie.  Hoeveel verschil zal het maken? Je kunt het controleren met gebruik van de Red Lynx simulator. Onthoud dat de simulator uitgaat van een populatie zonder selectie, geen migratie, en geen mutatie (tenzij je de condities daarvoor regelt met behulp van de schuifknoppen). Zeker een raszuivere populatie zal onder selectie staan voor eigenschappen voor type, maar je kunt aannemen dat er geen selectie is voor de “neutrale” allelen die geen effect hebben op type.
Deze simulator kan ook van praktisch nut zijn. Laten we zeggen dat er binnen jouw ras een discussie is over het opdelen van verschillende kleuren in het ras in verschillende populaties die niet gekruist mogen worden. Of misschien zijn het verschillende schofthoogtes of een fenotypische eigenschap. Als de groepen niet gekruist mogen worden, wat zijn dan de gevolgen voor de genetische stabiliteit van de resulterende kleinere populaties? Er zijn vele voorbeelden van rassen die in het verleden opgesplitst zijn - Norwich and Norfolk werden gescheiden op basis van oren, Toy en Standaard Manchester werden gescheiden op basis van schofthoogte (red.: situatie VS), de Belgische herdershonden zijn in de Vs gescheiden op basis van kleur (maar niet in Europa). Een ras opsplitsen heeft gevolgen voor de genetica van de gescheiden populaties, zoals je hier  aan de effecten van genetische drift op gen frequenties kunt zien. Er zullen daarbij ook veranderingen in andere genetische eigenschappen van de populaties optreden, zoals de mate van inteelt en fokkers zouden dit zorgvuldig moeten overwegen voordat ze veranderingen doorvoeren in het ras.

Door dr. Carol Beuchat
Met toestemming overgenomen en vertaald van de website van het  Institute of Canine Biology
In een vorig bericht, liet ik zien hoe inteelt en strenge selectie de kans op genetische aandoeningen vergroot (door toegenomen expressie van schadelijke mutaties en afname van de algehele gezondheid (door inteelt depressie). Ik heb ook uitgelegd hoe we de gezondheid kunnen verbeteren en het risico op genetische aandoeningen kunnen verkleinen door enkele eenvoudige veranderingen in de manier waarop we fokken. Ik heb aan de hand van een simpel stroomdiagram laten zien hoe waarom dit gebeurt.
(Als je mijn vorige bericht niet hebt gelezen, zou je dat eerst moeten doen en dan hier verder lezen: Eenvoudige strategieën om genetische aandoeningen bij honden te verminderen)
Er zijn meerdere consequenties van inteelt die misschien minder bekend zijn bij hondenfokkers maar die uiteindelijk belangrijk kunnen zijn omdat ze ook invloed hebben op de cyclus van “inteelt ---> genetische aandoening”.
Hieronder de illustratie uit mijn vorige bericht, waaraan ik nog een circuit heb toegevoegd (in groen). (ik heb het circuit aan de linkerkant over gezondheidsconsequenties vervangen door één term "gezondheid"-“health”-)
We beginnen wederom met inteelt van een populatie honden. Het paren van verwante honden geeft inteelt, waarbij een puppy identieke kopieën van een allel krijgt van beide ouders, een toename van het gedeelte van de genen dat homozygoot is. Tot hier volgen we dezelfde stappen zoals we eerder bespraken.
De homozygotie de we hebben gecreëerd door inteelt,  kan verdeeld zijn over de chromosomen, of het kan ik blokken van aangrenzende genen voorkomen.
Blokken van homozygotie op de chromosomen noemen we "runs of homozygosity" (ROH), en die hebben twee belangrijke eigenschappen.
a) de blokken homozygote allelen  hebben de neiging langer en langer te worden met inteelt.
b) afwijking van het koppelingsevenwicht (linkage disequilibrium) neemt toe met inteelt.
Hoe definiëren we "linkage disequilibrium". We denken bij overerving meestal aan één van de twee allelen op een loci die wordt doorgegeven aan een nakomeling door willekeurig toeval. Dit is een simpele en bruikbare manier om te denken over vererving, maar in werkelijkheid kan het veel gecompliceerder zijn. In feite, de gebieden van homozygote loci die runs of homozygotie vormen hebben de neiging gezamenlijk, als een blok over te erven. Deze onwillekeurige overerving op aangrenzende loci in een run of homozygotie wordt “afwijking van koppelingsevenwicht ("linkage disequilibrium") genoemd.
Dus, volg verder met gebruik van onderstaande kaart:

​1) inteelt creëert homozygotie
2) "runs" of homozygosity (ROH) nemen toe
3) linkage disequilibrium neemt toe
4) schadelijke mutaties komen vast te zitten in blokken van homozygotie
In stap 4, waarom komen schadelijke mutaties vast te zitten in blokken van homozygotie? Inteelt verwijdert genetische variatie. Om “weg” te fokken van een schadelijk allel, moet het alternatieve (d.i. het normale) allel  deze vervangen. Als er is ingeteeld om homozygotie voor genen of type te laten toenemen en selectie heeft plaats gevonden om genetische variatie te verminderen, kan het normale allel zeldzaam zijn geworden. Homozygotie van een mutatie in ROH’s zal toenemen. Nu wordt het moeilijk of onmogelijk om de mutatie te verwijderen of zelfs te vermijden en met de tijd neemt het aantal mutaties die “gevangen zitten” toe.
5) de inklemming van mutaties vergroot de “genetische belasting” ("genetic load"), het aantal schadelijke allelen in de genenpool
6) de expressie van recessieve aandoeningen neemt toe
Dit pad gaat nu samen met het pad dat we eerder bespraken.
​Je ziet dat de fokker nu gevangen zit. We proberen type te verbeteren en genetische aandoeningen te verminderen, maar op hetzelfde moment verliezen we genetische variatie die nodig is voor verbetering. We maken het ook steeds moeilijker, zo niet onmogelijk om weg te fokken van genetische problemen vanwege linkage disequilibrium. Natuurlijk, blijven we streng selecteren op type, die ons verzekert dat de blokken die die genen bevatten homozygoot blijven. De mutaties in deze blokken zitten er voor altijd in vast.
Nu wordt dit pad meegenomen in het grotere stroomschema, waar we aangedane honden of gehele lijnen hebben verwijderd, in een poging om genen die problemen veroorzaken kwijt te raken. Maar dit verkleint de genenpool en gooit waardevolle genetische variatie weg.
​En zo gaat het verder, keer op keer, waarbij de kwaliteit van de genenpool met elke volgende generatie verslechtert.
Dit is een echt probleem als je fokker bent. Want dit alles betekent dat hoe meer inspanning je levert om gezondheid te verbeteren met de gebruikelijke strategieën van inteelt en selectie, hoe groter het probleem wordt. Dit is waar we nu staan.
Hoe kunnen we dit oplossen?
Als we een zwaar ingeteelde hond paren met één die niet nauw verwant is, kunnen we homozygotie (inteelt) verminderen bij de puppy’s. Minder inteelt betekent kleinere blokken homozygotie, dus linkage disequilibrium is verminderd. Mutaties en andere ongewenste genen die vast zitten in runs of homozygotie zijn nu “vrij” en kun je daar weg van fokken. Er is ook nieuwe variatie die je zou kunnen gebruiken om fenotype te verbeten, dus selectie zal effectiever zijn.
Bedenk dat de meest waardevolle honden voor een outcross (red.: hier bedoeld als minder verwant binnen een ras) waarschijnlijk niet die zijn die je zou hebben gekozen op basis van fenotype. De honden met goed type waartoe je je aangetrokken voelt, hebben waarschijnlijk allemaal dezelfde ROH waarmee je al worstelt en er zal maar weinig winst zijn. Paradoxaal, hebben de honden met meer fenotypische variatie, met name als de variatie ver weg is van de extremen in type, het meest te bieden in termen van het ontsnappen van de neerwaartse spiraal zoals hierboven beschreven. Je zult waarschijnlijk geen adembenemende puppy’s krijgen uit een fok van honden van matig type, maar je ontsnapt uit de cyclus die je fokprogramma in een wurggreep houdt en die rashonden op de rand van de afgrond brengt.
Ik hoor al een hoop mensen klagen dat outcross nieuwe mutaties in je lijn brengt. Ja, dat kan. Je hebt waarschijnlijk kennis van de dominante mutaties in de honden waarmee je wilt fokken, dus de nieuwe nieuwe mutaties zijn meest waarschijnlijk recessief. Kijk eens opnieuw naar het stroomschema en je ziet dat deze recessieve mutaties compleet onschuldig zijn zolang je niet twee honden paart die dezelfde mutatie hebben. En als je inteelt laag houdt, kun je deze mutaties elimineren door selectie omdat ze niet gevangen zitten in ROH’s. Wees bovendien terughoudend met het gebruik van populaire dekreuen; het laatste wat je wil, is tientallen puppy’s op de wereld zetten die elk de helft van de mutaties dragen van die favoriete hond. Onthoud, inteelt is de oorzaak van het probleem waar we nu mee te maken hebben. De oplossing is simpel: zet geen twee kopieën van dezelfde mutatie samen in een puppy.
Je kunt dit probleem oplossen. Je kunt gezondheidsproblemen elimineren in één generatie. Je kunt selectie effectiever gebruiken. Je kunt de variatie toevoegen die nodig is om betere honden te fokken dan je nu hebt. De honden worden ouder. Dierenartsrekeningen zullen minder worden. Fokken wordt eenvoudiger. Nestgrootte neemt toe. De gezondheid en welzijn van honden zal verbeteren.
Het geheim van het verbeteren van de gezondheid van honden ligt niet in nog meer DNA testen, maar in gedegen genetisch management. We weten wat de grote belasting met genetische aandoeningen bij honden veroorzaakt en we weten hoe we dit kunnen voorkomen. Het proberen om problemen te elimineren door vervelende mutaties achterna te hollen, haalt ons niet uit deze negatieve spiraal die het probleem veroorzaakt. Steeds meer selectie toepassen bij het fokken zal eveneens niet helpen. Deze maken de problemen alleen erger.
De oplossing is genetisch beheer. Begrijp hoe de problemen ontstaan zijn. Begrijp het belang van genetische variatie en lagere inteelt om gezondheid te verbeteren. En fok op een manier die zorgt voor een duurzame toekomst.
Als je iets nuttigs hebt geleerd van dit artikel, er is veel meer informatie die de gezondheid van honden en je fokprogramma succesvoller kan maken. De beste manier om je kennis en begrip te vergroten is door één van de cursussen die worden aangeboden door ICB. Deze cursussen zijn speciaal ontwikkeld voor fokkers en zij zijn echt de beste manier voor fokkers om te leren wat ze moeten weten om de gezondheid en het welzijn van honden te verbeteren



Zo aan het einde van 2018, kijken ook wij terug naar het jaar. We kunnen veel zeggen, maar laten het maar bij wat cijfers van het kleine aantal nestjes dat dit jaar is geboren. Nesten staan in willekeurige volgorde. Het beperkte aantal nestjes, welke een trend is die in geheel Europa te merken is én het gebruik van een beperkt aantal ouderdieren -m.n. te veel gebruik van dezelfde reu(en) - is erg zorgwekkend. Kleine populaties zijn instabiel en staan erg onder invloed van genetische drift en werken negatief op de genetische diversiteit.

 

 

 

 

 

Door dr. Carol Beuchat.

Met toestemming overgenomen en vertaald vanaf de website van het Institute of Canine Biology

In de laatste decennia is het aantal genetische aandoeningen bij honden in een alarmerende snelheid toegenomen. Dit ondanks de ijverige inspanning van fokkers om gezonde honden te fokken. Waarom gebeurt dit?
Ik heb een basis stroomschema gemaakt om te illustreren hoe fokstrategieën gericht op het verminderen van genetische aandoeningen in een populatie, juist het tegenovergestelde effect hebben. Ik doorloop elke stap in het proces en je kunt dit volgen op de afbeelding van het stroomschema hieronder.
1) Laten we beginnen met een populatie honden in een gesloten genenpool zoals die hieronder in de linker cirkel. Omdat alle honden in de populatie van een klein aantal founders afstamt, zijn ze allemaal verwant. Paren van twee dieren levert waarschijnlijk nakomelingen op die homozygoot zijn voor enkele loci, dus dat ze twee kopieën hebben geërfd van een allel die voortkomt uit een gemeenschappelijke voorouder van beide ouderdieren. In het stroomschema, resulteert de inteelt stap gemiddeld genomen in een toename van homozygotie in het nageslacht.
2) elke hond draagt tientallen of zelfs honderden recessieve mutaties die geen problemen veroorzaken als er slechts een enkele kopie van de mutatie is en het andere allel op de loci normaal is. Maar als twee kopieën van de mutatie zijn geërfd, is er geen kopie van het normale allel, dus homozygotie vergroot de expressie van deze recessieve mutaties.
3) Homozygotie heeft bovendien meer schadelijke effecten op functies, zoals een verminderde vruchtbaarheid, kleinere nesten, hogere puppysterfte, kortere levensverwachting, etc. die we gezamenlijk “inteelt depressie” noemen. Inteelt verhoogt ook de incidentie van polygenetische aandoeningen zoals kanker, epilepsie, immuunsysteem gerelateerde aandoeningen, hart- en nierziekten en meer.
4) Honden met genetische aandoeningen worden meestal uit de fokpopulatie verwijderd.
5) Het verwijderen van honden uit de fokpopulatie verkleint de genenpool.
6) Kleinere genenpools hebben minder genetische diversiteit.
7) Met minder genetische variatie in de populatie, worden de genetische verschillen tussen individuen verkleind en hun gelijkenis en verwantschap vergroot.
8) Het paren van verwante dieren is inteelt, dus wederom resulteert deze stap in een toename van homozygotie.
Vanaf hier, hebben we nu een negatieve spiraal die weer terug gaat naar de bovenkant van de lijst met stappen. En opnieuw, de toegenomen homozygotie vergroot de inteelt depressie, het risico op kanker, epilepsie en andere polygenetische aandoeningen en de expressie van recessieve mutaties. Het resultaat van deze neerwaartse spiraal is de gestage verslechtering van de gezondheid van de populatie, generatie na generatie, tenzij er een geschikte interventie plaats vindt.
Laten we eens kijken naar de cyclus voor de hondenpopulatie in de cirkel rechts op de illustratie.
a) Fokkers zijn erg selectief over welke honden gebruikt worden voor de fok. In het algemeen wordt ongeveer 25% van de stamboom puppy’s uiteindelijk gebruikt voor de fok, dit is gewoonlijk dus niet meer dan 1 of 2 puppy’s per nest.
b) Dit betekent natuurlijk dat 75% van de puppy’s niet wordt gebruikt. Zij en alle unieke genen die zij mogelijk dragen worden daarmee uit de fokpopulatie verwijderd waardoor de grootte van de genenpool verkleind wordt.
c) Kleinere genenpools hebben minder genetische diversiteit.
d) Als er minder genetische diversiteit is, zijn de honden in de populatie genetisch gezien meer gelijk aan elkaar.
e) Het paren van honden die genetisch gelijk zijn, geven homozygotie in de nakomelingen.
f) Homozygotie vergroot de expressie van schadelijke mutaties.
Uiteindelijk voert dit pad in de stappen zoals we die al beschreven hadden die een neerwaartse spiraal vormen die de incidentie van genetische ziekten verhoogt.
Het doel van selectieve fok is om kwaliteitshonden te fokken. De twee fokstrategieën die we net beschreven hebben, het paren van verwante dieren (inteelt) en het paren van “de beste met de beste” resulteren niet in verbetering, behalve op de korte termijn. Op de lange termijn, beperkt het verlies van genetische diversiteit genetische verbetering omdat de populatie de genetische variatie die nodig is voor selectie, heeft verloren. Inteelt depressie en toegenomen incidentie van genetische aandoeningen verlaagt de kwaliteit van de groep fokdieren en verbetering –of alleen het behouden van kwaliteit- wordt steeds moeilijker. Zonder interventie, sterven populaties dieren die op deze wijze gefokt worden, uit.
Als je de downstream consequenties begrijpt van beslissingen in de fok, die zijn weergegeven als de stappen in deze stroomschema’s, kun je deze cyclus van genetische achteruitgang voorkomen. Als voorbeeld, de simpelste actie om te nemen is om minder beperkend te zijn omtrent met welke dieren gefokt wordt. Het fokken met 50% i.p.v. 25% van de gefokte puppy’s beperkt de uitputting van de genenpool. Het paren van honden die minder verwant zijn, verlaagt de kans op genetische aandoeningen bij de puppy’s, evenals inteelt depressie. Het vervangen van genen die in de populatie verloren zijn gegaan door outcross met een andere populatie (dat wil zeggen door een plan van rotatie-kuising) of introductie via een cross-breeding programma zal de genenpool vergroten en de effecten van selectieve fok beperken.
DNA testen zijn niet de heilige graal. Op zich, zullen ze niet resulteren in gezondere honden. Uiteindelijk is het, om de gezondheid van de stamboom honden te vergroten, nodig om de basis van de populatie genetica te begrijpen en een gedegen strategie voor genetisch beheer te volgen. Het probleem oplossen vergt begrip van de reden hoe sommige simpele veranderingen in de manier waarop we fokken, de kwaliteit van de honden die we fokken dramatisch kan verbeteren.


Op verzoek, ook de gemiddelde COI voor 15 generaties van alle Briard nestjes die in Nederland geboren zijn, aan de grafiek toegevoegd. Dit is het aantal generaties zoals weergegeven in de database van worldpedigrees. Helaas is het daar niet mogelijk nog meer generaties te laten berekenen omdat dit te veel van het geheugen van de site vraagt. Ben je benieuwd naar een berekening over alle generaties, kun je ons altijd een berichtje sturen natuurlijk.

 

N.a.v. een grafiek voor de Berner Sennenhond, besloot ik een grafiekje te maken aan de hand van in Nederland geboren nesten Briards en het gemiddelde inteeltpercentage van die nesten per jaar, berekend over 5, 10 en alle generaties. Voor de jaren 70 werden er maar weinig nestjes in Nederland geboren (wat de pieken verklaart), maar daarna zie je een duidelijk beeld van de trend; als je alleen naar 5 of 10 generaties kijkt, ontstaat het beeld dat de inteelt binnen het ras afneemt, maar de lijn die een meer waarheidsgetrouwe COI weergeeft, laat een heel ander beeld zien.

 


Door Carol Beuchat PhD
Met toestemming overgenomen en vertaald vanaf de website van het Institute of Canine Biology
Eén van de problemen met strenge selectie in een gesloten genenpool is dat honden gestaag meer en meer genetisch hetzelfde worden. Hoewel selectieve fok met raszuivere honden als resultaat heeft dat de honden meer consistent worden, heeft het ook de keerzijde dat een ras in een genetisch gesloten circuit vast komt te zitten, waaruit ontsnappen onmogelijk is. Als je de richting van selectie moet wijzigen, bijvoorbeeld richting een andere eigenschap of weg van een genetische aandoening, moet je honden vinden die de genetische diversiteit hebben die nodig is om die selectie in een andere richting mogelijk te kunnen maken. Genetische diversiteit is het basismateriaal voor selectie: zonder kun je niets veranderen.
Hoeveel genetische diversiteit is er in jouw ras? Hoe kun je de honden vinden die de genetische variatie bezitten waar jij naar op zoekt bent?
Er zijn enkele verschillende manieren om te bepalen hoeveel genetische diversiteit er in je ras is, maar laten we kijken naar de manier die verwantschaps coëfficiënten gebruikt, waarover we het eerder hadden (zie deel 1,2 en 3 in deze serie).

Laten we zeggen dat we een populatie dieren hebben die niet nauw verwant is. Als we de genen van elke hond vergelijken met elke andere hond in de populatie, kunnen we elke hond zijn gemiddelde verwantschap berekenen, wat ik in een eerder bericht uitlegde. Omdat we weten dat de honden in onze populatie relatief onverwant zijn, weten we dat de waardes voor de gemiddelde verwantschap laag zullen zijn (ze variëren tussen de 0 en 1). Als we de gemiddelde verwantschap van alle honden in de populatie in een grafiek zetten, krijgen we een grafiek die eruit ziet zoals die hieronder links voor Labrador Retrievers, waarbij alle waardes minder dan ongeveer 0.06 zijn. Aan de andere kant, als we een populatie van nauw verwante honden hebben, zou een grafiek er zoals de laatste rechtsonder, voor Ierse Wolfshonden uit kunnen zien, waarbij de waardes boven de 0,3 liggen. Als je de grafieken voor de andere rassen hieronder bekijkt, zie je dat de distributie voor de gemiddelde verwantschap aanzienlijk varieert.
Wat vertellen deze grafieken ons over genetische diversiteit?
Herinner je dat de gemiddelde verwantschap (mK) de gemiddelde verwantschap van een hond t.o.v. alle anderen in een populatie is. De Labrador Retriever is één van de meest populaire rassen in de wereld, dus hun aantal is groot, en er zijn (sub)populaties; showhonden, jachthonden, huishonden die genetisch allemaal iets van elkaar verschillen en populaties in verschillende landen zullen waarschijnlijk onderling ook verschillen. Dit is een ras met VEEL genetische diversiteit en de gemiddelde verwantschap waardes zijn meestal laag. Maar als je nog een grafiek zou maken met daarin alleen showlijnen, zou de verdeling waarschijnlijk vertekend zijn met hogere waardes omdat deze honden nauwer verwant zijn aan elkaar dan dat ze verwant zijn aan jachtlijnen.
Als je de Labradors met de Ierse Wolfshonden vergelijkt, is de grafiek onevenredig verdeeld met veel hogere waardes. Dit geeft in deze populatie van meer dan 200 honden aan dat de gemiddelde verwantschap erg hoog is. De uitzondering is een paar honden die ver beneden de meerderheid uitkomt en niet nauw verwant is tot het gros van de populatie. Dit geeft aan dat de meeste honden nauw verwant zijn aan elkaar.
Omdat de verwantschaps coëfficiënt is gebaseerd op de genen die hetzelfde zijn omdat ze geërfd zijn van dezelfde voorouders, kunnen we deze grafieken interpreteren in termen van relaties. Als je een neef en nicht paart die verder niet in geteeld zijn, is de voorspelde inteelt coëfficiënt van hun nakomelingen 0.0625 of 6.25% Als we naar de grafiek voor de Labrador Retrievers hierboven kijken, zien we dat de meeste waardes van gemiddelde verwantschap lager zijn dan 0.06. Dus, kunnen we zeggen voor deze populatie dat gemiddeld de Labradors minder verwant zijn dan een neef en nicht.
Je kunt hetzelfde doen voor de grafieken voor de andere rassen, waarbij je deze kaart kunt gebruiken waarbij familierelaties zijn weergegeven in verwantschaps coëfficiënten:
Dus, kijkend naar de grafiek voor de Ierse Wolfshonden (rechts onder), zie je dat de meeste honden een gemiddelde verwantschap hebben van > 0.25; dus, gemiddeld zijn de meeste honden meer verwant aan elkaar dan een volle broer en zus. Stel je een familie reünie voor met een paar tantes, ooms, neven en nichten en 134 van jouw broers en zussen. Dit is een ras met een erg hoge graad van gemiddelde verwantschap t.o.v. elkaar. Hetzelfde geldt voor de Cavalier King Charles Spaniels. In het kleine voorbeeld van de Havanezer waren er 2 clusters honden, één met een relatief hoog niveau van verwantschap t.o.v. elkaar en één met een relatief lage verwantschap.
Er zijn verschillende manieren om genetische diversiteit in je ras te begrijpen. Hier hebben we je laten zien hoe je de verwantschaps coëfficiënt kunt gebruiken om informatie te krijgen over de gemiddelde niveaus van verwantschap in een populatie honden. Dit eens weer een gereedschap die je kunt toevoegen aan je genetische gereedschapskist!

 


Door Carol Beuchat PhD
Met toestemming vertaald en overgenomen van de website van het Institute of Canine Biology
Dit is deel 3 van “leuke trucs met Verwantschaps Coëfficiënten”. Lees ook deel 1: “
Is deze hond echt een outcross?” en deel 2: “Moet ik met deze hond fokken?
Ongeveer 80% van de ziekten die nu bekend zijn bij honden wordt veroorzaakt door een enkelvoudige recessieve mutatie. Door het gebruik van moderne DNA technologie die ons in staat stelt duizenden of miljoenen markers in het genoom van een hond te onderzoeken, kunnen we meestal deze beschadigde allelen vinden en een test ontwikkelen die fokkers helpt bij de screening van hun honden.
Veel aandoeningen zijn echter niet het resultaat van een enkelvoudige mutatie. Bij deze zijn er misschien tientallen of zelfs honderden genen betrokken. Het ontwikkelen van een test die honden zonder symptomen identificeert, maar die wel zieke nakomelingen zal geven, is niet erg waarschijnlijk voor de meeste van deze aandoeningen. Dit is een heel groot probleem voor fokkers, omdat veel van deze ziekten, zoals kanker, epilepsie, auto-immuunziektes ernstig zijn en een steeds groter probleem worden. Doch lijkt het erop dat ze voorkomen bij verwante honden, dus weten we dat genen een belangrijke rol spelen. Hoe kunnen we deze ziekten beheersen als we geen DNA test hebben? We kunnen verwantschaps coëfficiënten gebruiken. Blijf dit volgen.
Verwantschaps coëfficiënten geven informatie over de verwantschap van honden door het beoordelen van paarsgewijze genetische gelijkenis. Een statistische techniek die cluster analyse wordt genoemd kan gebuikt worden om van de verwantschaps gegevens een dendrogram te maken – een genomische stamboom – die honden groepeert die nauw verwant zijn en tevens de relaties tussen die groepen weergeeft. Als een eigenschap of aandoening een genetische component heeft, mogen we verwachten dat de clusters van nauw verwante honden waarschijnlijk meer eigenschappen delen dan onverwante honden aangezien ze veel van de zelfde genen delen.
Dit is een dendrogram die geconstrueerd is met gebruik van verwantschaps coëfficiënten die berekend zijn uit DNA gegevens van 211 Ierse Wolfshonden. De bovenste figuur is de vergroting van de rechterkant zodat je het wat eenvoudiger kunt zien. En de onderste kaart is de gehele dendrogram.
Laten we even de onderste kaart bekijken. Je ziet dat de populatie honden verdeeld is in twee kleinere groepen onder de pijl die gemarkeerd is met “A”. Als we de tak volgen die van punt A naar rechts loopt, komen we een tweede tak tegen bij pijl B die twee subgroepen creëert. Als we de tak van B naar links volgen komen we tak C tegen die wederom de honden opsplitst in twee groepen. Je kunt nu zien dat dit een dendrogram wordt genoemd omdat het een afbeelding is van een structuur die vertakt als een boom.
Dendrograms zijn een beetje lastig om goed te lezen en om er goed in te worden, vergt wat oefening. Je moet onthouden dat takken kunnen roteren rond elk vertakkingspunt. Dus bij voorbeeld, de bovenste tak die zich splitst bij A, kan geroteerd worden op die splitsing zodat de groene groep het meeste links, verplaatst wordt naar de meest rechtse kant naast de turquoise groep. ,
Duidelijk, de groene groep is niet het meest verwant aan de rode groep die er naast stond op het moment dat de groene groep aan de linkerkant van de kaart stond.
Overigens kunnen we de twee groepen aan de meest rechtse kant (bij pijl D) roteren zodat de groene groep nu direct naast de rode groep komt. Dus er zijn eigenlijk verschillende manieren om de clusters te ordenen die niet hun onderlinge relatie wijzigen. Dit komt omdat de verwantschap wordt weergegeven door de lengte van de lijnen die de groepen honden verbinden. Honden die verbonden zijn door erg korte lijnen zijn nauw verwant en honden die verder verwant zijn, zijn verbonden door langere lijnen. Wanneer we groepen rond hun vertakkingspunt draaien, wordt de lengte van de verbindingslijnen niet veranderd, dus de informatie over verwantschap wordt niet veranderd. (lees verder: How to read a dendrogram).
Nu hebben we een afbeelding van de genetische verwantschap tussen alle 211 honden in dit voorbeeld. We hebben ook informatie over welke van deze honden is gediagnosticeerd met epilepsie. Dit wordt weergegeven door drie asterisken (***) aan de bovenkant van de tak voor elke hond. Voor honden zonder asterisk, kan het zijn dat er voor hen geen epilepsie is gerapporteerd of dat er geen informatie is. Dus deze kaart is niet gebruikt worden als representatie van welke honden epilepsie hebben en welke niet. Het vertelt alleen van welke honden een diagnose voor epilepsie is gerapporteerd.
Wat vertelt deze grafiek ons nu? We kunnen zien dat de aangedane honden de neiging hebben om samen te clusteren in familie groepen, wat waarschijnlijk een genetische component van het ziekterisico reflecteert. Jammer genoeg zijn er geen grote groepen waar epilepsie geheel afwezig is. Dit vertelt je dat de genetische predispositie voor epilepsie wijdverspreid is, maar mogelijk niet uniform, in deze populatie honden. Met een goede administratie en het toevoegen van data aan de database, zijn we misschien in staat om een duidelijker beeld te krijgen van de risicopatronen die gebruikt kunnen worden om keuzes te maken in de fok om het aantal ziektegevallen te verminderen.
Er zijn vele rassen die een strijd voeren tegen genetische aandoeningen waarvoor geen DNA test bestaat, of een test die onbetrouwbaar is om die honden te identificeren die de ziekte daadwerkelijk ontwikkelen (b.v. Degeneratieve myelopathie). Voor deze ziekten zouden verwantschaps coëfficiënten erg waardevolle informatie omtrent ziekterisico kunnen geven aan fokkers. Natuurlijk, kan dezelfde techniek zoals hier beschreven gebruikt worden voor ziekten die veroorzaakt worden door enkelvoudige mutaties, als de incidentie van alle genetische aandoeningen in een dendrogram zou staan en up-to-date zou worden gehouden, kunnen fokkers een probleem opmerken voordat het wijdverspreid in het ras raakt en het moeilijk wordt deze te beheersen vanwege de hoge frequentie van dragers.
Eén voorbehoud met betrekking tot verwantschaps coëfficiënten. De cluster analyse gebruikt informatie voor alle honden in een voorbeeld populatie om een boom te creëren die het meest waarschijnlijk hun echte relatie reflecteert. Als er meer honden aan de populatie worden toegevoegd, kan het zijn dat dat ze groepen anders geordend worden omdat de relaties tussen hen veranderd zijn. Dus, om bruikbaar te zijn, moeten gegevens voor verwantschap regelmatig bijgesteld worden en dient accuraat de genetische breedte van de beoogde populatie te representeren. Dit blijft het geval.
We kunnen verwantschaps coëfficiënten zowel vanuit stamboom als DNA databases halen. DNA gegevens hebben wel enig voordeel, omdat deze verschillen in verwantschap tussen nestgenoten onderscheiden, terwijl stamboomgegevens dat niet doen. Aan de andere kant is de stamboom informatie waardevol omdat er geen DNA monsters verzameld hoeven te worden met bijbehorende kosten voor de analyse. Als je niet probeert om nestgenoten te vergelijken kun je je beperken tot één of misschien twee honden in een nest, wat de kosten aanzienlijk zal drukken.
Overdenk de waardevolle informatie die analyse van verwantschaps coëfficiënten voor jouw fokkeuzes zou kunnen geven en hoe genetische aandoeningen in je ras beheerst zouden kunnen worden. Als je een stamboom database hebt of een genotypische analyse van SNPs zou het het echt waard zijn om te doen.

 


Door Carol Beuchat PhD.
Met toestemming vertaald en overgenomen van de website van het Institute of Canine Biology
Dit is deel 2 van “Leuke truucjes met verwantschaps coëfficiënt”, lees deel 1 HIER
Eén van de belangrijkste redenen waarom genetische diversiteit van een ras verloren gaat, is selectie. In populaties wilde dieren, zorgen de meeste dieren voor nakomelingen en geven hun genen door aan de volgende generatie. De nakomelingen die de beste combinaties van genen erven overleven en reproduceren zichzelf en degenen die niet zo gelukkig waren, werden door natuurlijke selectie verwijderd.
Bij honden, worden er vaak maar één of twee puppy's uit een nest ingezet voor de fok, waarbij we diegenen selecteren die het beste passen bij de doelen van de fokker en die goede rasvertegenwoordigers zijn. Maar als je begon met een reu en teef waarvan jij vond dat ze van goede kwaliteit waren, zouden alle puppy's “kwaliteits” genen moeten hebben, maar in verschillende combinaties, waarvan sommige combinaties een “betere” puppy maken dan andere. Wanneer puppy's minder geschikt worden geacht en niet voor de fok worden ingezet, riskeren we dat we genen uit de genenpool verliezen die juist zorgden voor de goede kwaliteit bij de ouderdieren. We beperken onze toekomstige fok opties wanneer we deze genen verliezen en we verliezen ook de mogelijkheid om ze samen te gooien met een mix van genen van een ander ouderdier om daarmee misschien iets prachtigs te fokken. Je kunt niet elke hond voor de fok inzetten en niet elke hond is het waard om van gefokt te worden.
Als je op zowel kwaliteit (op wat voor niveau dan ook) en gezondheid (en natuurlijk doe je dat) wilt fokken, zou je je zorgen moeten maken over het onomkeerbare verlies van genetische diversiteit door selectieve fok omdat erosie van de genetische basis van een ras uiteindelijk consequenties zal hebben.
Maar hoe bepaald je welke honden belangrijk zijn om genetische diversiteit te bewaren? Hiervoor kun je de Verwantschaps Coëfficiënt gebruiken.
De Verwantschaps Coëfficiënt (K) is een schatting van de genetische gelijkheid tussen twee dieren die verwant zijn door afstamming. Zoals ik in deel 1 van deze serie (Leuke truucjes met Verwantschaps Coëfficiënt: is deze hond echt een outcross?) al schreef, bepaalt de Verwantschaps Coëfficiënt van de reu en teef de inteelt van hun nest. Op een andere manier gezegd, de inteelt coëfficiënt van een hond is de verwantschaps coëfficiënt van zijn ouders. (en onthoud van deel 1 dat K altijd een vergelijking is tussen 2 individuen). We gaan kijken hoe je de Verwantschaps Coëfficiënt kunt gebruiken om de genetische waarde van een hond binnen een ras te beoordelen.
Hieronder staat dezelfde verwantschaps matrix waar we het in mijn vorige artikel over Verwantschaps Coëfficiënt over hebben gehad. Wederom, de witte vakken op het diagonaal is elke hond vergeleken met zichzelf (dus K = 1) en de andere vakken zijn gecodeerd met kleuren om het eenvoudiger te maken om de combinaties te zien die minder (of meer) verwant zijn aan elkaar.We kunnen de kleur codering die wordt aangegeven in de drie vakken boven links in de hoek gebruiken om eenvoudig die honden op te merken die nauw verwant zijn aan andere honden (dat wil zeggen, groen, geel en rood). Als je de lijnen van honden 6 en 7 van links naar rechts volgt (of volg de kolommen naar beneden als je dat fijner vindt), zie je dat daar veel rode, oranje en gele vakken zijn, die de honden aangeven die zo verwant zijn aan 6 en 7 als halfbroer/-zus (K = 0,125) tot als broer/zus (K = 0,25). Dit betekent dat de genen van hond 6 en 7 ook in andere honden binnen de populatie gevonden kunnen worden, vanwege de gezamenlijke afkomst.
Doe nu hetzelfde voor honden 3 en 4. Je ziet dat de meeste vakken groen zijn, aangevend dat zij niet zo nauw verwant zijn aan de meeste andere honden in deze groep, behalve aan elkaar. De Verwantschaps Coëfficiënt met elkaar is 0,25, wat betekent dat ze zo nauw als broer/zus verwant zijn.
Als honden 6 en 7 veel verwanten hebben in de populatie en honden 3 en 4 maar erg weinig, dan is het laatste paar genetisch waardevoller omdat zij genen dragen die niet algemeen zijn binnen deze honden. Het is betrekkelijk eenvoudig om de genetisch waardevolle honden te identificeren in een dergelijke kleine voorbeeld populatie, maar hoe kunnen we dit doen voor een grote populatie honden met gecompliceerde patronen van verwantschap?
De eenvoudigste manier is door het gemiddelde (mean) van alle Verwantschaps Coëfficiënten voor elk dier te berekenen. In de afbeelding hieronder, heb ik een kolom aan de rechterkant toegevoegd, gelabeld als mK, voor “mean Kinship” (gemiddelde verwantschap). Het is eenvoudig te berekenen door de waardes in een rij op te tellen en te delen door het aantal honden (de Verwantschaps Coëfficiënt van elke hond met zichzelf is in de berekening meegenomen). Nu hebben we een kolom getallen waar we eenvoudig, in de fel gele vakken kunnen zien welke honden genetisch het meest verschillen van de rest. Hoewel ze gemiddeld als half broer/-zus verwant zijn aan de rest van de populatie, weten we dat het honden omvat met weinig of geen verwantschap en je moet dit in gedachten houden als je de waardes van verschillende honden vergelijkt. Het is niet altijd waardevol om de verwantschap matrix te bestuderen om te zien of een hond met K = 0.125 nauw verwant is aan iedereen, of in plaats daarvan onverwant is aan de meeste honden, maar nauw verwant aan enkelen die het gemiddelde opdrijven (zoals hier).
Nu kunnen we de gegevens voor de gemiddelde verwantschap gebruiken om snel die honden te identificeren die genetisch het meest belangrijk zijn in een grote populatie. De simpele grafiek hieronder geeft een rangschikking weer van honden op basis van K, waarbij de laagste waarden van K  aan de linkerkant staan – de honden met de grootste genetische waarde – en de hoge waarden aan de rechterkant (de honden met de minste genetische waarde). In deze populatie zijn er een paar honden met een hoge genetische waarde, maar het grootste gedeelte van de rest van de populatie is nauw verwant.

We zouden de Verwantschaps Coëfficiënten veel meer moeten gebruiken dan we nu doen en wat afbreuk doet aan het behoud van genetische diversiteit binnen onze rassen. Fokkers zouden moeten weten welke honden genetisch het waardevolst zijn, ook als deze geen top winnaars in de competitie zijn, omdat de genetische variatie die zij dragen het basismateriaal is voor ras verbetering in de toekomst. Lijnen die verloren gaan, zijn voor altijd verloren. Misschien zouden rasverenigingen een genetische diversiteit commissie moeten hebben die verantwoordelijk is voor het bewaken van de populatie om te voorkomen dat er variatie verloren gaat, of dit zou kunnen vallen onder de gezondheid commissies omdat diversiteit en gezondheid hand in hand gaan. Bedenk wel dat als iedereen naar de minder verwante honden zou rennen, hun genen algemeen worden en op zodanige manier gemixt worden dat het niet meer mogelijk is om deze strategisch te gebruiken om genetische diversiteit te beheren. Diversiteit zou strategisch benut moeten worden. (voor dezelfde reden, zou er een “populaire dekreu” monitor moeten zijn, wiens taak het zou zijn om een oog te houden op reuen die meer produceren dan hun “eerlijke” aandeel aan puppy's).
Leer hoe je de Verwantschaps Coëfficiënt gebruikt om wat giswerk uit je beslissingen omtrent genetische verwantschap of uniciteit weg te nemen in je toekomstige fokplannen. Dit eenvoudige gereedschap kan je een schat aan waardevolle informatie geven!

 


Door Carol Beuchat PhD.
Met toestemming overgenomen en vertaald vanaf de website van het Institute of Canine Biology

Het is een goed idee om elke paar generaties een relatief onverwante hond te gebruiken om wat nieuwe genetische diversiteit in je lijnen te brengen en deze op te frissen (hierna outcross genoemd, red.). Maar de juiste hond vinden om dit te doen kan verraderlijk zijn. Een hond die in de laatste 5 of 6 generaties geen gemeenschappelijke voorouders  deelt met de hond die je als partner wilt gebruiken, kan zoveel gezamenlijke voorouders verderop in de stamboom hebben dat het alsnog een hoge mate van verwantschap geeft. Of, nog erger, misschien heb je geen degelijke stamboom database zodat je eigenlijk geen idee hebt hoe verwant de twee honden misschien wel zijn. Dit is een extra ergerlijk probleem als je een dure import hond overweegt. Je wilt het niet fout doen.
Dus wat doe je ? Hoe kun je een hond identificeren die een goede outcross is voor je fokprogramma?
Conservatie genetica heeft hiervoor een perfect instrument. Het wordt de “verwantschaps coëfficiënt” genoemd (K -van Kinship coëfficiënt) en deze meet de genetische overeenkomst tussen twee individuen (Li et al 2011).
In het bijzonder vertelt de verwantschaps coëfficiënt je hoeveel van het genoom van twee honden hetzelfde is doordat het geërfd is van een gemeenschappelijke voorouder (Je zult de verwantschaps coëfficiënt ook tegenkomen als “ coancestry coëfficiënt”; dat is hetzelfde).
De verwantschaps coëfficiënt reflecteert de gemeenschappelijke afstamming (coancestry) op dezelfde wijze als de inteelt coëfficiënt. Een neef en nicht delen over het algemeen 6,25% van hun genoom en K voor dit stel is dan 0,0625. Voor een halfbroer en -zus is de voorspelling van dat gedeelde deel 12,5%, of K = 0,125; en voor volle broer/zus K = 0,25, of 25%.
De verwantschaps coëficiënt is gerelateerd aan de inteelt coëfficiënt; de inteelt coëfficiënt van een hond is de verwantschaps coëfficiënt van zijn ouders. Dus, de verwantschaps coëfficiënt tussen een potentiële reu en teef is ook de voorspelde inteelt coëfficiënt van hun nest. De verwantschaps coëfficiënt wordt in de populatiegenetica weegegeven als het Griekse symbool phi, zoals je in dit figuur ziet:
De verwantschaps coëfficiënt kan worden berekend uit een stamboom database, net zoals inteelt coëfficiënten. Maar het kan ook direct uit DNA- data geschat worden – in feite, de “werkelijke” verwantschaps coëfficiënt, dat het echte niveau van gemeenschappelijke afstamming tussen twee honden, gebaseerd op hun DNA, reflecteert.
​​
Laten we eens kijken naar deze eenvoudige stamboom die 14 honden bevat. Misschien dacht je erover om een paring te doen tussen hond 14 en 7, maar ben je bezorgd dat dit te verwant is. Je wilt weten hoe nauw verwant - genetisch hetzelfde - deze twee honden zijn. De verwantschaps coëfficiënt vertelt je dit. Lees hier hoe.
De verwantschaps coëfficiënt is altijd een vergelijking tussen twee honden. Je kunt de K berekenen voor elk paar van de honden in de stamboom en ze in een matrix zetten. Elke hond wordt zowel langst de kant naar beneden vermeld als horizontaal aan de bovenkant. Het getal in het vak waar de kolom en rij van de honden elkaar kruist, is de verwantschaps coëfficiënt van dat paar. De witte vakken op het diagonaal geeft de vergelijking van elke hond met zichzelf weer.
We kunnen bijvoorbeeld bepalen dat de verwantschaps coëfficiënt tussen hond 14 en 7 0,19 of 19% is. Dit betekent dat, als je at random een allel kiest van de allel paren op een willekeurige locus van het DNA van hond 14 en evenzo een allel at random kiest voor die locus van hond 7, de kans dat je twee allelen kiest die hetzelfde zijn doordat ze van een gemeenschappelijke voorouder geërfd zijn, 0,19 of 19% is. Om het anders te zeggen, de kans dat nakomelingen van dit paar honden homozygoot is voor dat allel (dus twee identieke kopieën van een allel van een gemeenschappelijke voorouder geërfd) is 19%. Daarnaast, als deze twee honden een nest voort brengen, is de voorspelde inteelt coëfficiënt van de puppy's gemiddeld 19%.
Berekend vanuit een stamboom, is de verwantschaps coëfficiënt een schatting van de gemiddelde verwachte verwantschaps coëfficiënt; dus de gedeelde genetische verwantschap door gedeelde afstamming. Maar verwachtschap kan ook direct uit dNA data bepaald worden, zoals dit door Embark aangeboden wordt (zover ik weet, het enigste bedrijf dat honden eigenaren de mogelijkheid geeft de onbewerkte gegevens voor hun eigen honden te downloaden). Gebaseerd op DNA zijn deze meer het “werkelijke” resultaat dan de verwachte schatting van genetische verwantschap en zullen voor elke hond in een nest verschillen.
Nu, hier komt het mooie van dit. Laten we zeggen dat je op zoek bent naar en hond die een outcross is voor de teef die je wilt laten dekken en je bent bereid een hond te importeren als dat nodig is. Je hebt de verwantschaps coëfficiënt berekend aan de hand van de stamboom database van je ras en er zijn twee buitenlandse honden, nestgenoten, die veelbelovend lijken. Zouden deze honden een goede outcross voor je teef zijn? Zou één van de twee beter genetisch passen dan de ander?
Om deze vragen te beantwoorden, kun je directe vergelijkingen doen van het genoom van deze honden met die van je teef door het verwantschaps coëfficiént te berekenen voor elke reu-teef combinatie. Moderne DNA analyse die gebruik maakt van “single nucleotide polymorphisms” (SNPs) kan nu met een hoge resolutie uitstekende gegevens geven om dat te doen. ("Single nucleotide polymorphism" is een deftige benaming voor loci die in hoge mate variabel zijn (“polymorphic”); de afkorting wordt uitgesproken als “snips”. We kunnen eenvoudig en voordelig honderden of duizenden – zelfs miljoenen – loci op de chromosomen van een paar honden vergelijken en bepalen of de allelen op elk van deze loci hetzelfde zijn of verschillend. Verder, bij gebruik van gegevens voor allel frequenties in de grotere populatie, kunnen we bepalen of de gemeenschappelijke SNPs kopieën zijn van hetzelfde allel in een gemeenschappelijke voorouder; dus dat ze “identiek door afkomst“ zijn (“identical by descent”, IBD). Dit is de techniek die gebruikt wordt voor het bepalen van de relaties tussen hondenrassen (Dreger et al 2016), en wordt ook gebruikt om genetische mutaties die geassocieerd worden met ziekten te identificeren in “genome-wide-association studies” (GWAS).
In plaats van de verwantschap te schatten aan de hand van een stamboom database, die je slechts één getal geeft die voor het hele nest geldt, kun je de werkelijke graad van genetische gelijkenis tussen twee honden schatten. In feite kun je met gebruik van SNPs zelfs zien welke gebieden op elk chromosoom gedeeld worden. Je kunt deze informatie gebruiken om te zien welke overlappende blokken van homozygotie er zijn in twee honden, waarbij alle nakomelingen dus ook homozygoot zullen zijn op die plek. (meer hierover in de volgende blog!) Je kunt specifiek kijken naar de karakteristieken van het genoom van de twee nestgenoten en bepalen of er op enige manier de één beter matcht met je teef dan de ander. En de verwantschaps coëfficiënt vertelt je ook de geschatte inteelt coëfficiënt van het nest van elk van deze twee reuen.
Voor de fokker die het ras in stand wil houden, is de genomische verwantschaps coëfficiënt die bepaald wordt uit SNP genotypering het beste, meest geavanceerde hulpmiddel die heden ten dage beschikbaar is voor genetisch managment om de kwaliteit van je puppy's te vergroten, terwijl ook de genetische diversiteit beschermd wordt voor de gezondheid van je ras in de toekomst.
We zullen meer leren over verwantschaps coëfficiënten en hoe de verwantschaps matrix te gebruiken in de nieuwe cursus van ICB, "Strategies for Preservation Breeding", die 10 September 2018 begint. Sluit je aan bij andere fokkers die hun ras willen behouden en die dit krachtige hulpmiddel gebruiken om hun fokprogramma te verbetern. Als je geïnteresseerd bent in het gebruik van genomische verwantschaps coëfficiënten om de mogelijkheden van je volgende nest te verkennen, neem dan contact op met ICB en we zullen samen met jou dat mogelijk maken.
REFERENCES
Dreger, DL, M. Rimbault, BW Davis, A Bhatnagar, HG Parker, & EA Ostrander. 2016. Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic trait mapping. Disease Models and Mechanisms 9: 1445-1460. (pdf)
Hayward, JL, MG Castelhano, KC Olivera, and others. 2016. Complex disease and phenotype mapping in the domestic dog. Nature Communications 7:10460. DOI: 10.1038/ncomms10460. (pdf)
Li, M-H, I Stranden, T Tiirikka, M-J SevonAimonen, & J Kantanen. 2011. A comparison of approaches to estimate the inbreeding coefficient and pairwise relatedness using genomic and pedigree data in a sheep population. PLoS ONE: Nov 2011; Vol 6:11. e26256. (pdf)

error: Content is protected !!